Finding the Sweet Spot: Trading Quality, Cost & Speed During Inference-Time LLM Reflection

Jack Butler, AWS, The United Kingdom Nikita Kozodoi, AWS, Germany Zainab Afolabi, AWS, The United Kingdom Brian Tyacke, Zalando, Germany Gaiar Baimuratov, Zalando, Germany

Motivation

- Frequently we want to choose the best combination of desired task accuracy, latency budget and cost
- However, it **not always intuitive** how to allocate inference budget, especially across different domains
- Inference-time compute allows a direct trade-off of accuracy / cost / latency

Inference-Time Compute

Our open-source library implementing self-reflection

Inference strategies:

Model-agnostic self-reflection

Claude's budget tuning

Overall Results

Task	Best-Performing Model			
	© Pure Accuracy	✓ Largest Improvement		
Math	Claude 3.7 Sonnet: 88% (3 reflections)	Nova Micro: 22% => 71% (~220%, 1 reflection)		
Text-to-SQL	Nova Lite: 74% (1 reflection)	Claude 3.7 Sonnet: 67.5% => 71% (~5%, 3 reflections)		
Translation	Nova Premier: 50.4 METEOR (O reflections)	Claude 3.7 Sonnet: 48.5 => 49.4 METEOR (~2%, 3 reflections)		
Sentiment Classification	Claude 3.7 Sonnet: 97% (1 reflection)	Nova Micro: 85% => 95% (~12%, 1 reflection)		

1. Pareto Frontiers

2. Self-Reflection Rounds

Different models benefit from different number of reflections, which varies across datasets

3. Transition Dynamics

Nova Micro

Claude 3.5 Sonnet v2

There are distinct correction patterns during consecutive self-reflection rounds depending on the LLM

4. Feedback Mechanisms

Model	No feedback		LLM judge feedback		SQL execution feedback	
	1 round	3 rounds	1 round	3 rounds	1 round	3 rounds
Amazon Nova Premier	72.58	74.98	73.97	72.58	73.74	71.14
Amazon Nova Pro	71.75	73.67	71.71	66.96	68.62	73.50
Amazon Nova Lite	75.41	73.05	79.57	74.02	72.63	72.83
Amazon Nova Micro	70.73	72.14	77.34	75.77	73.15	70.41
Claude Sonnet 3.7	70.78	72.69	70.82	66.78	67.20	73.32
Claude Sonnet 3.5 v2	65.71	64.99	67.28	65.43	67.22	67.33
Claude Haiku 3.5	67.09	66.36	68.16	68.64	68.56	72.58

Providing feedback as context between reflection rounds helps to improve the accuracy

5. Prompt Caching

Prompt caching uniquely benefits sampling-based reflection, caching past inference iterations