Finding the Sweet Spot: Trading Quality, Cost & Speed During Inference-Time LLM Reflection
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Motivation 1. Pareto Frontiers
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. Different models benefit from different number of reflections, which varies across datasets
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15 language pairs . There are distinct correction patterns

during consecutive self-reflection rounds depending on the LLM
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Model-agnostic self-reflection Claude’s budget tuning Model No feedback LLM judge feedback SQL execution feedback
1 round 3 rounds 1 round 3 rounds 1 round 3 rounds
Amazon Nova Premier 72.58 74.98 73.97 72.58 73.74 71.14
Amazon Nova Pro 71.75 73.67 71.71 66.96 68.62 73.50
Amazon Nova Lite 75.41 73.05 79.57 74.02 72.63 72.83
Ove ra l l Re S u lts Amazon Nova Micro 70.73 72.14 77.34 75.77 73.15 70.41
Claude Sonnet 3.7 70.78 72.69 70.82 66.78 67.20 73.32
Claude Sonnet 3.5 v2 65.71 64.99 67.28 65.43 67.22 67.33
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~ Largest Improvement
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5. Prompt Caching

Latency vs Number of Reflections
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. Providing feedback as context between reflection rounds helps to improve the accuracy

. Prompt caching

uniquely benefits

sampling-based
flection, caching past
inference iterations
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