Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection

Agentic & GenAl Evaluation KDD 2025

Motivation

> Practitioners often need to choose the best combination of desired task accuracy, latency budget and cost for their use case.

Motivation

> Inference Time Compute allows a direct trade-off of accuracy / cost / latency.

Training-based

The Surprising Effectiveness of Test-Time Training for Abstract Reasoning

Sampling-based

[2]

Experiments

> We compared the following models

Leveraging self-reflection for all models and "budget tuning" for Claude 3.7 Sonnet

Self-reflection

Budget tuning

Datasets & Evaluation

Flores 200

METEOR score

*200 examples across 15 language pairs

Spider 1.0

Results accuracy of normalised SQL results on row and cell level

*5 sampled databases

IMDB Reviews

Classification accuracy

*100 random samples

Math500

*100 random samples

- String matching on cleaned LaTeX
- Symbolic equivalence checking with SymPy

Results: Overall Performance

	Best-Performing Model				
Task	Pure Accuracy	Largest Improvement			
Math	Claude 3.7 Sonnet: 88% (3 reflections)	Nova Micro: 22% => 71% (~220%, 1 reflection)			
Text-to-SQL	Nova Lite: 74% (1 reflection)	Claude 3.7 Sonnet: 67.5% => 71% (~5%, 3 reflections)			
Translation	Nova Premier: 50.4 METEOR (0 reflections)	Claude 3.7 Sonnet: 48.5 => 49.4 METEOR (~2%, 3 reflections)			
Sentiment Classification	Claude 3.7 Sonnet: 97% (1 reflection)	Nova Micro: 85% => 95% (~12%, 1 reflection)			

Results: Efficient Frontiers

Math

Translation

Results: Number of Self-Reflections

Math Translation

Distinct reflection dynamics depending on the LLM and the domain

Ablation 1: Transitions Dynamics (Math)

Nova Micro

Claude 3.5 Sonnet v2

Distinct reflection dynamics depending on the LLM and the domain

Ablation 2: Feedback Mechanisms (Text-to-SQL)

Providing feedback to LLM as context between reflection rounds helps to improve the accuracy

Model	No feedback		LLM judge feedback		SQL execution feedback	
Model	1 round	3 rounds	1 round	3 rounds	1 round	3 rounds
Amazon Nova Premier	72.58	74.98				
Amazon Nova Pro	71.75	73.67				
Amazon Nova Lite	75.41	73.05				
Amazon Nova Micro	70.73	72.14				
Claude Sonnet 3.7	70.78	72.69				
Claude Sonnet 3.5 v2	65.71	64.99				
Claude Haiku 3.5	67.09	66.36				

Ablation 2: Feedback Mechanisms (Text-to-SQL)

Providing feedback to LLM as context between reflection rounds helps to improve the accuracy

Model	No feedback		LLM judge feedback		SQL execution feedback	
Widdei	1 round	3 rounds	1 round	3 rounds	1 round	3 rounds
Amazon Nova Premier	72.58	74.98			73.74	71.14
Amazon Nova Pro	71.75	73.67			68.62	73.50
Amazon Nova Lite	75.41	73.05			72.63	72.83
Amazon Nova Micro	70.73	72.14			73.15	70.41
Claude Sonnet 3.7	70.78	72.69			67.20	73.32
Claude Sonnet 3.5 v2	65.71	64.99			67.22	67.33
Claude Haiku 3.5	67.09	66.36			68.56	72.58

Ablation 2: Feedback Mechanisms (Text-to-SQL)

Providing feedback to LLM as context between reflection rounds helps to improve the accuracy

Model	No feedback		LLM judge feedback		SQL execution feedback	
Wiodei	1 round	3 rounds	1 round	3 rounds	1 round	3 rounds
Amazon Nova Premier	72.58	74.98	73.97	72.58	73.74	71.14
Amazon Nova Pro	71.75	73.67	71.71	66.96	68.62	73.50
Amazon Nova Lite	75.41	73.05	79.57	74.02	72.63	72.83
Amazon Nova Micro	70.73	72.14	77.34	75.77	73.15	70.41
Claude Sonnet 3.7	70.78	72.69	70.82	66.78	67.20	73.32
Claude Sonnet 3.5 v2	65.71	64.99	67.28	65.43	67.22	67.33
Claude Haiku 3.5	67.09	66.36	68.16	68.64	68.56	72.58

Learnings

1) No one-size-fits-all strategy across domains

- Large gains in math (+220%) and sentiment analysis
- Mixed/negative results for translation and text-to-SQL

2) Smaller models benefit more and budget tuning < manual reflection

- > Small models + reflection can outperform larger models, offering cost savings
- Claude's built-in reasoning underperforms manual reflection and increases cost

Appendix

Ablation 3: Prompt Caching

- Iterative self-reflection allows caching the previous part of the prompt
- This brings latency & cost improvements to manual self-reflection
- Built-in reasoning does not benefit from prompt caching

Ablation 3: Prompt Caching

Ablation 3: Prompt Caching

17

Results: Marketing content localization case study

Language		No Reflection		Self-Reflection with LLM Judge Feedback			
	BLEU	METEOR	LLM Judge Score	BLEU	METEOR	LLM Judge Score	
German	0.32	0.61	0.38	0.33	0.62	0.47	
French	0.16	0.47	0.61	0.14	0.42	0.62	
Spanish	0.29	0.61	0.49	0.29	0.59	0.50	

Results – texttosql

- Amazon Nova Lite Outperforms all other models
- Nova models are the optimal configuration with respect to latency, cost and accuracy

•

Results – texttosql

Only Claude 3.7 Shows consistent improvement

No pattern across families of models

Results – translation

Results - translation

Results – sentiment

Results – sentiment

